35 research outputs found

    Towards understanding two-level-systems in amorphous solids -- Insights from quantum circuits

    Full text link
    Amorphous solids show surprisingly universal behaviour at low temperatures. The prevailing wisdom is that this can be explained by the existence of two-state defects within the material. The so-called standard tunneling model has become the established framework to explain these results, yet it still leaves the central question essentially unanswered -- what are these two-level defects? This question has recently taken on a new urgency with the rise of superconducting circuits in quantum computing, circuit quantum electrodynamics, magnetometry, electrometry and metrology. Superconducting circuits made from aluminium or niobium are fundamentally limited by losses due to two-level defects within the amorphous oxide layers encasing them. On the other hand, these circuits also provide a novel and effective method for studying the very defects which limit their operation. We can now go beyond ensemble measurements and probe individual defects -- observing the quantum nature of their dynamics and studying their formation, their behaviour as a function of applied field, strain, temperature and other properties. This article reviews the plethora of recent experimental results in this area and discusses the various theoretical models which have been used to describe the observations. In doing so, it summarises the current approaches to solving this fundamentally important problem in solid-state physics.Comment: 34 pages, 7 figures, 1 tabl

    Enhancing the coherence of superconducting quantum bits with electric fields

    Get PDF
    In the endeavor to make quantum computers a reality, integrated superconducting circuits have become a promising architecture. A major challenge of this approach is decoherence originating from spurious atomic tunneling defects at the interfaces of qubit electrodes, which may resonantly absorb energy from the qubit’s oscillating electric field and reduce the qubit’s energy relaxation time T1_1. Here, we show that qubit coherence can be improved by tuning dominating defects away from the qubit resonance using an applied DC-electric field. We demonstrate a method that optimizes the applied field bias and enhances the average qubit T1_1 time by 23%. We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in situ coherence optimization of individual qubits

    Enhancing the Coherence of Superconducting Quantum Bits with Electric Fields

    Get PDF
    In the endeavour to make quantum computers a reality, integrated superconducting circuits have become a promising architecture. A major challenge of this approach is decoherence originating from spurious atomic tunneling defects at the interfaces of qubit electrodes, which may resonantly absorb energy from the qubit's oscillating electric field and reduce the qubit's energy relaxation time T1T_1. Here, we show that qubit coherence can be improved by tuning dominating defects away from the qubit resonance using an applied DC-electric field. We demonstrate a method that optimizes the applied field bias and enhances the average qubit T1T_1 time by 23%. We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.Comment: 5.5 pages and 4 figures (main Text), plus 6 pages with supplementary figure

    Enhancing the coherence of superconducting quantum bits with electric fields

    Get PDF
    In the endeavour to make quantum computers a reality, integrated superconducting circuits have become a promising architecture. A major challenge of this approach is decoherence originating from spurious atomic tunneling defects at the interfaces of qubit electrodes, which may resonantly absorb energy from the qubit\u27s oscillating electric field and reduce the qubit\u27s energy relaxation time T1_1. Here, we show that qubit coherence can be improved by tuning dominating defects away from the qubit resonance using an applied DC-electric field. We demonstrate a method that optimizes the applied field bias and enhances the average qubit T1_1 time by 23%. We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits

    Observation of directly interacting coherent two-level systems in a solid

    Get PDF
    Parasitic two-level tunneling systems originating from structural material defects affect the functionality of various microfabricated devices by acting as a source of noise. In particular, superconducting quantum bits may be sensitive to even single defects when these reside in the tunnel barrier of the qubit's Josephson junctions, and this can be exploited to observe and manipulate the quantum states of individual tunneling systems. Here, we detect and fully characterize a system of two strongly interacting defects using a novel technique for high-resolution spectroscopy. Mutual defect coupling has been conjectured to explain various anomalies of glasses, and was recently suggested as the origin of low frequency noise in superconducting devices. Our study provides conclusive evidence of defect interactions with full access to the individual constituents, demonstrating the potential of superconducting qubits for studying material defects. All our observations are consistent with the assumption that defects are generated by atomic tunneling.Comment: 13 pages, 7 figures. Includes supplementary materia

    Multi-photon spectroscopy of a hybrid quantum system

    Get PDF
    We report on experimental multi-photon spectroscopy of a hybrid quantum system consisting of a superconducting phase qubit coherently coupled to an intrinsic two-level defect. We directly probe hybridized states of the combined qubit-defect system in the strongly interacting regime, where both the qubit-defect coupling and the driving cannot be considered as weak perturbations. This regime is described by a theoretical model which incorporates anharmonic corrections, multi-photon processes and decoherence. We present a detailed comparison between experiment and theory and find excellent agreement over a wide range of parameters.Comment: 6 pages, 6 figure

    Probing defect densities at the edges and inside Josephson junctions of superconducting qubits

    Get PDF
    Tunneling defects in disordered materials form spurious two-level systems which are a major source of decoherence for micro-fabricated quantum devices. For superconducting qubits, defects in tunnel barriers of submicrometer-sized Josephson junctions couple strongest to the qubit, which necessitates optimization of the junction fabrication to mitigate defect formation. Here, we investigate whether defects appear predominantly at the edges or deep within the amorphous tunnel barrier of a junction. For this, we compare defect densities in differently shaped Al/AlOx_{x}/Al Josephson junctions that are part of a Transmon qubit. We observe that the number of detectable junction-defects is proportional to the junction area, and does not significantly scale with the junction’s circumference, which proposes that defects are evenly distributed inside the tunnel barrier. Moreover, we find very similar defect densities in thermally grown tunnel barriers that were formed either directly after the base electrode was deposited, or in a separate deposition step after removal of native oxide by Argon ion milling

    Correlating decoherence in transmon qubits: Low frequency noise by single fluctuators

    Get PDF
    We report on long-term measurements of a highly coherent, non-tunable superconducting transmon qubit, revealing low-frequency burst noise in coherence times and qubit transition frequency. We achieve this through a simultaneous measurement of the qubit's relaxation and dephasing rate as well as its resonance frequency. The analysis of correlations between these parameters yields information about the microscopic origin of the intrinsic decoherence mechanisms in Josephson qubits. Our results are consistent with a small number of microscopic two-level systems located at the edges of the superconducting film, which is further confirmed by a spectral noise analysis.Comment: 10 Pages, 6 figure
    corecore